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Abstract

All-electron full-potential linearized augmented plane-wave calculations of the surface energy, work function, and interlayer spacings
of close-packed metal surfaces are presented, in particular, for the free-electron-like metal surfaces, Mg(0001) and Al(111), and for the
transition metal surfaces, Ti(0001), Cu(111), Pd(111), and Pt(111). We investigate the convergence of the surface energy as a function
of the number of layers in the slab, using the Cu(111) surface as an example. The results show that the surface energy, as obtained using
total energies of the slab and bulk from separate calculations, converges well with respect to the number of layers in the slab. Obviously,
it is necessary that bulk and surface calculations are performed with the same high accuracy. Furthermore, we discuss the performance of
the local-density and generalized gradient approximations for the exchange–correlation functional in describing the various surface
properties.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The surface energy, work function, and interlayer spac-
ings of metal surfaces are important physical properties
which play a role in determining the behavior of solid metal
surfaces when used in various applications, for example,
heterogeneous catalysis, electrochemistry, corrosion, lubri-
cation, etc. [1,2]. The surface energy of the various crys-
tallographic facets determine the equilibrium shape of
crystals, however, the direct experimental measurements
of the surface energy are difficult to perform and subject
to various uncertainties, e.g., presence of impurities. In
0039-6028/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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addition, most of the available experimental surface-energy
data of metals are obtained from surface tension measure-
ments in the liquid phase and extrapolated to zero temper-
ature [3,4], which does not provide the orientation
dependence of the surface energy. Due to the difficulties
in obtaining experimental surface energies, as well as their
orientation dependence [5,6], accurate calculations based
on modern first-principles methods play an important role
[7–11].

There are two approaches by which to obtain surface
energies from first-principles calculations: (i) one may eval-
uate the total energy of a slab of the particular solid and
subtract the corresponding bulk total energy obtained from
a separate calculation. Alternatively, (ii), one may use slabs
of different thicknesses and extract from them the energy of
a bulk atom. Boettger et al. [12,13] and Fiorentini and
Methfessel [14] argued that approach (i) is problematic,
yielding surface energies that diverge linearly as a function
of the slab thickness. The origin of this problem is that
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often slab and bulk total energies are calculated with differ-
ent levels of accuracy. Thus, Fiorentini and Methfessel sug-
gested that approach (ii) is superior: extracting the bulk
total energy from the slope of the slab total energy versus
the number of layers in the slab ensures that surface and
bulk are extracted with the same accuracy. We will show
below, however, that well converged surface energies can
be obtained from separate bulk and slab calculations, pro-
vided that slab and bulk systems are calculated with the
same high accuracy.

The work function is the minimum energy required for
an electron to escape from a solid through a certain surface
and it is orientation dependent. In particular, the work
function changes are an important source of information
in the study of adparticles on surfaces [2]. Adsorbates that
have higher electronegativities than the substrate atoms
typically increase the work function, while those with lower
electronegativities have the opposite effect. For example,
Na atoms adsorbed on Al(111) decrease the substrate
work function by a large amount, i.e., �1.40 eV at cover-
age 1/3 of a monolayer (ML) [2]. The electronegativity of
Na is 0.93 and that of Al is 1.61, thus there is displacement
of electron density from Na toward the substrate, which
gives rise to an adsorbate-induced surface dipole. An oppo-
site effect is observed for Cl adsorbed on Al(111) where
there is charge transfer from the substrate to Cl, so that
Cl is partially negatively charged and sits on an adsorption
site which is positively charged [2]. The adsorption of rare-
gas atoms on metal surfaces also induce a decrease in the
substrate work function, e.g., Xe on Pt(111) for coverage
1/3 ML, reduces the work function by 1.36 eV. For these
systems, the mechanism is due to an adsorbate-induced
polarization of adparticle and substrate surface [15–17].
In many cases, experimental values of the work function
are only available for polycrystalline materials [18,19].
Thus, first-principles calculations are valuable in order to
predict work functions, or even better, work function dif-

ferences for different surface crystallographic orientations.
Experimentally, the best accessible surface property is

the atomic structure, i.e., the interlayer relaxations. The
atomic structure can be obtained with high accuracy using
quantitative low-energy electron diffraction (LEED) inten-
sity analysis [20–33]. And theoretically, first-principles
calculations also give an accurate description, see for exam-
ple, Refs. [7,34–53], where it has been found that the major-
ity of transition metal surfaces show a contraction of the
first interlayer spacing, i.e., the spacing between the two
outermost layers is smaller than in the bulk terminated
(unrelaxed) surface. An expansion of the outermost inter-
layer spacing has been reported, e.g., for Mg(0001) [29,
33,37,44,45], Al(111) [11,22,24,28,31,46], and Pt(111) [21,
22,47,50].

In the present paper we employ the all-electron full-
potential linearized augmented plane-wave (FP-LAPW)
method for the study of the following problems: (i) Conver-
gence of the surface energy with slab thickness using the
close-packed Cu(111) surface as an example. The inter-
layer spacings and work function as a function of the thick-
ness of the slab will be also discussed. (ii) Performance of
the local-density approximation and the generalized gradi-
ent approximation in the study of the surface properties
using, as an example, two free-electron-like metal surfaces,
i.e., Mg(0001) and Al(111), and four transition metal sur-
faces, i.e., Ti(0001), Cu(111), Pd(111), and Pt(111). (iii)
In the literature, one occasionally finds that calculated sur-
face properties are still obtained at the experimental lattice
constant, instead of the equilibrium theoretical value.
Thus, it is interesting to see how the surface properties of
metal surfaces differ when obtained at experimental and
theoretical lattice constants. (iv) Due to the high accuracy
of the FP-LAPW method, our well converged results may
serve as a benchmark with which to compare the results
of other computational approaches, e.g., semi-empirical
calculations.

This paper is organized as follows: In Section 2, the the-
oretical approach and computational details are described.
In Section 3, we present and discuss the bulk and surface
properties, as well as comparison with other theoretical
and experimental results. Section 4 summarizes the main
conclusions, while Appendix A lists the total energies used
to calculate the surface energies of Cu(111) for different
slab thickness, and discusses the affect of the broadening
parameter of the Fermi–Dirac distribution function on
the surface properties.

2. Theoretical approach and computational details

All calculations are performed using density functional
theory (DFT) [54,55] with the local-density approximation
(LDA) [56,57] and the generalized gradient approximation
(GGA) to describe the exchange–correlation energy func-
tional. For the GGA functional, we use the formulation
proposed by Perdew et al. [58], which is commonly called
PBE. The Kohn–Sham equations are solved using the all-
electron FP-LAPW method [59], as implemented in the
WIEN code [60–62]. This implementation includes total
energy and atomic force calculations, which allows a
structural optimization via a damped molecular-dynamics
approach [63].

The core states are treated fully relativistically, while the
semi-core and valence states are treated by the scalar rela-
tivistic approximation, i.e., spin–orbit coupling is included
(neglected) for the core (semi-core and valence) states. The
FP-LAPW wave functions in the interstitial region are rep-
resented using a plane-wave expansion truncated to include
only plane waves that have kinetic energies less than some
particular cutoff energy, Ewf, and for the potential repre-
sentation in the interstitial region, plane waves with kinetic
energies up to Epot are considered. Inside the muffin-tin
spheres with radius Rmt, the wave functions are expanded
in radial functions (solution of the radial Schrödinger
equation) times spherical harmonics up to lwfmax, and for
the representation of the potential inside the muffin-tin
spheres, a maximum of lpotmax is used. In the present work:
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Ewf = 12.5 Ry (Mg and Ti), 14.1 Ry (Al and Pd), and
16.7 Ry (Cu and Pt); Rmt = 1.27 Å (Mg, Ti, Al, and Pd)
and 1.16 Å (Cu and Pt). lwfmax ¼ 12 (Mg, Al, and Ti) and
10 (Cu, Pd, and Pt); Epot = 144 Ry (LDA) and 169–
256 Ry (PBE); lpotmax ¼ 6 for all systems.

The integration of the Brillouin zones (BZ) is performed
using the special k-point method [64] where the broadening
of the Fermi surface is done using the Fermi-function with
an artificial electronic temperature of 0.05 eV (given as
kBTel) [65,66]. The BZ integrations for the bulk calcula-
tions are performed using (12 · 12 · 12) and (16 · 16 ·
10) Monkhorst–Pack grids for face-centered cubic (fcc)
and hexagonal close-packed (hcp) structures, respectively.
From systematic LDA calculations of the surface energies
of the unrelaxed Cu(111) surface as a function of the
number of k-points in the irreducible part of the BZ (see
surface energy section), we found that well converged
surface energies can be obtained using a (16 · 16 · 1)
Monkhorst–Pack grid in the (1 · 1) surface unit cell,
which correspond to 30 k-points in the irreducible part of
the BZ.

The close-packed metal surfaces are modeled using a
(1 · 1) surface unit cell consisting of a finite number of lay-
ers separated by a vacuum region of 15 Å. For the Al(111),
Cu(111), Pd(111), and Pt(111) surfaces seven layers were
used, while eight layers were used for the Mg(0001) and
Ti(0001) surfaces. Both sides of the slab are relaxed and
it is assumed that the surface atoms are in the equilibrium
configuration when the force on each atom is smaller than
0.70 mRy/bohr. The convergence of bulk and surface prop-
erties with respect to the number of k-points and cutoff
energy have been carefully tested and are reported in Ref.
[15].

3. Results and discussion

3.1. Bulk properties

Total energy calculations are performed for 13 regularly
spaced volumes, which are obtained by varying the volume
within ±3.0% of the experimental volume. The volumes at
zero pressure (equilibrium volume), bulk moduli calculated
at the equilibrium volume, and the cohesive energies are
obtained using Murnaghan’s equation of state [67]. Fur-
thermore, for comparison, the bulk moduli and cohesive
energies are also calculated at the experimental volumes
[67]. Calculation of the cohesive energy requires the total
energy of the free atoms, which are obtained from spin-
polarized calculations using a cubic box with side length
of 10.58 Å and one k-point, 1
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convergence of the total energy with cell size as compared to selecting the
C-point.
of spin–orbit coupling only for the core states. All our re-
sults are obtained at zero temperature and no corrections
are made for the zero point energy. The bulk cohesive
properties calculated with the LDA and PBE functionals,
as well as experimental results and other ab initio results,
are summarized in Table 1. The errors in percent with re-
spect to the experimental results [68] are also given.

We find that the LDA underestimates the lattice con-
stant for all studied systems, while the PBE overestimates
it for Cu, Pd, and Pt. For Mg, Al, and Ti, the PBE
also underestimates it, but only by a small amount, i.e.,
<0.50%. Considering the relative errors with respect to
the experimental values, the PBE provides a better descrip-
tion for Mg, Al, Ti, and Cu, while for Pt, the LDA per-
forms better. For Pd, the relative error obtained with the
LDA and PBE are almost the same, but in opposite direc-
tions. The bulk moduli show a corresponding trend to that
obtained for the equilibrium lattice constant (i.e., an over-
estimate for lattice constants that are underestimated),
however, the relative errors in the bulk moduli are signifi-
cantly larger compared to those of the equilibrium lattice
constants.

With regard to the cohesive energy, the LDA overesti-
mates it for all systems, which is the usual finding [69,70].
The largest error occurs for Ti (38.14%) and the smallest
for Mg (16.56%). The PBE underestimates the cohesive en-
ergy for Mg, Pd, and Pt, while it overestimates it for Al, Ti,
and Cu. In general, the PBE provides a better overall
agreement with experimental results, as the relative errors
compared to the experimental results are smaller, as can
be seen from inspection of Table 1.

We find good agreement with the results of other ab
initio calculations [11,37–39,41,46,51,69–72]; however, in
some particular cases there are deviations. For example,
for Mg we find that the magnitude of our LDA cohesive
energy (equilibrium lattice constant) differs by +0.33 eV
(�0.08 Å) compared to the value obtained by Fuchs et al.
[69] using the pseudopotential plane wave (PPPW) method.
Furthermore, we obtain that c0/a0 = 1.623 (LDA) and
1.620 (PBE), while Fuchs et al. [69] reported 1.59 (LDA)
and 1.66 (PBE); the experimental one is 1.62. These differ-
ences might be due to the frozen core approximation that is
the basis of the pseudopotential approach. We note that for
bulk Al, we obtain good agreement with the PPPW calcu-
lations of Fuchs et al. [69] and FP-LAPW calculations of
Da Silva [11]. The equilibrium lattice constant and bulk
moduli for Al, Cu, and Pt are very close to those reported
by Khein et al. [71] (cf. Table 1), in which the FP-LAPW
method was also used. Cohesive energies were not reported
in Ref. [71].

We find that the cohesive energies calculated using the
experimental volume differ very little (see Table 1); the
greatest deviation being 0.05 eV for Ti with the LDA. Cor-
respondingly, Ti exhibits the greatest deviation (�2.71%)
to the experimental lattice constant of all the elements stud-
ied. The bulk moduli, however, are significantly more sen-
sitive to deviations in the volume, which is explained due



Table 1
Bulk cohesive properties of Mg, Al, Ti, Cu, Pd, and Pt

Bulk a0 (Å) B0 (Mbar) Ecoh (eV)

Mg LDAa 3.13 c0/a0 = 1.623 �2.49% 0.38 +8.57% (0.28; �20.00%) �1.77 +17.22% (�1.75; +15.89%)
PBEa 3.20 c0/a0 = 1.620 �0.31% 0.34 �2.86% (0.33; �5.71%) �1.50 �0.66% (�1.50; �0.66%)
LDA 3.05b, 3.12c 0.39b, 0.38c �2.09b

GGA 3.20b 0.30b �1.42b

Exp.d 3.21 c0/a0 = 1.624 0.35 �1.51

Al LDAa 3.98 �1.73% 0.84 +16.67% (0.47; �34.72%) �4.07 +20.06% (�4.06; +19.76%)
PBEa 4.04 �0.25% 0.78 +8.33% (0.75; +4.17%) �3.60 +6.19% (�3.60; +6.19%)
LDA 3.97e, 3.98f 0.80e, 0.84f �4.09e

PBE 4.04g 0.75g �3.65g

GGA 4.05e, 4.04h 0.73e, 0.71h �3.54e

GGA 4.05b, 4.09f 0.79b, 0.73f �3.52b

Exp.d 4.05 0.72 �3.39

Ti LDAa 2.87 c0/a0 = 1.577 �2.71% 1.26 +20.00% (0.92; �12.38%) �6.70 +38.14% (�6.65; +37.11%)
PBEa 2.94 c0/a0 = 1.579 �0.34% 1.12 +6.67% (1.06; +0.95%) �5.87 +21.03% (�5.87; +21.03%)
LDA 2.88i, 2.93j 1.32j (�6.29k)

Exp.d 2.95 c0/a0 = 1.588 1.05 �4.85

Cu LDAa 3.52 �2.49% 1.92 +40.15% (1.26; �8.03%) �4.57 +30.95% (�4.53; +29.80%)
PBEa 3.63 +0.55% 1.42 +3.65% (1.54; +12.41%) �3.51 +0.57% (�3.51; +0.57%)
LDA 3.55b 1.72b �4.31b

LDA 3.52f 1.92f �4.29k

PBE 3.63l 1.38l �3.74l

GGA 3.67b 1.34b �3.38b

GGA 3.62f 1.51f �3.30k

Exp.d 3.61 1.37 �3.49

Pd LDAa 3.85 �1.03% 2.22 +22.65% (1.87; +3.31%) �5.04 +29.60% (�5.03; +29.31%)
PBEa 3.95 +1.54% 1.63 �9.94% (2.10; +16.02%) �3.63 �6.68% (�3.62; �6.94%)
LDA 3.88m 2.25m �5.05m

Exp.d 3.89 1.81 �3.89

Pt LDAa 3.89 �0.77% 3.05 +9.71% (2.66; +8.13%) �7.16 +22.60% (�7.15; +16.71%)
PBEa 3.97 +1.28% 2.41 �13.31% (2.96; +6.47%) �5.59 �4.28% (�5.57; �4.62%)
LDA 3.90f 3.07f

GGA 3.97f 2.46f

Exp.d 3.92 2.78 �5.84

Equilibrium lattice constant, a0, bulk modulus, B0, and cohesive energy, Ecoh. The numbers in parentheses are the values calculated using the experimental
lattice constants. The relative error with respect to the experimental value is given in percent.
a Present work using the FP-LAPW method.
b PPPW method, Ref. [69].
c PPPW method, (c0/a0 = 1.616), Ref. [37].
d Experimental result, Ref. [68].
e PPPW method, Ref. [70].
f LAPW method, Ref. [71].
g FP-LAPW method, Ref. [11].
h PPPW method, Ref. [46].
i LAPW method, (c0/a0 = 1.581), Ref. [39].
j PPPW method, (c0/a0 = 1.594), Ref. [41].
k Slater-Type Orbitals (STOs), Ref. [72]; (expt. geometry).
l FP-LAPW method, Ref. [51].

m PPPW method, Ref. [38].
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the linear dependence of the bulk modulus with respect to
the pressure [67]. For example, for Ti, as calculated with
the LDA, it varies from being +20.00% greater than
experiment (1.05 Mbar) with a value of 1.26 Mbar at the
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Fig. 1. Relative convergence of the surface energy of the seven-layer
unrelaxed Cu(111) surface calculated with the LDA as a function of
increasing k-point mesh size. The slab and the bulk were calculated using
(n · n · 1) and (n · n · n) Monkhorst–Pack grids, respectively.
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theoretical equilibrium volume, to being �12.38% less,
with a value of 0.92 Mbar when the experimental value is
used. Another large variation occurs for Al, as obtained
using the LDA: at the theoretical volume the bulk modulus
is 0.84 Mbar (+16.67% larger than experiment, which is
0.72 Mbar), while using the experimental value (which
is 1.73% greater), the bulk modulus is 0.47 Mbar, signi-
ficantly (�34.72%) less than experiment. Bulk moduli
calculated with the PBE functional, in general, exhibit less
dramatic changes to those obtained using the experimental
volume since the theoretical lattice constant is closer to the
experimental one.

3.2. Clean surface properties

To test the convergence of the surface properties with
number of layers in the slab, Nl, we consider the variation
of the surface energy, work function, and interlayer spac-
ings of the Cu(111) surface as a function of Nl. We con-
sider Nl = 1 up to 12. All layers in the slab are allowed
to relax.

3.2.1. Surface energy

The surface energy is the energy (per surface atom or per
unit area) needed to split an infinite crystal into two semi-
infinite crystals. Then, conceptually, it is straightforward to
calculate the surface energy using this definition. The sur-
face energy per surface atom is given by

r ¼ 1

2
Eslab
tot � N lEbulk

tot

� �
; ð1Þ

where Eslab
tot is the total energy of a slab with Nl layers (one

atom per atomic layer) and Ebulk
tot is the reference total en-

ergy per atom of the bulk system. The factor 1
2
takes into

account that there are two equivalent surfaces in the slab.
Ebulk
tot may be calculated from a separate bulk calculation,

or it may be determined from the expression,

Ebulk
tot ¼ Eslab

tot ðN l þ 1Þ � Eslab
tot ðN lÞ ¼ oEslab

tot ðNÞ=oN ð2Þ
provided that Nl is large enough. This is so since two slabs
of different thickness, Nl + 1 and Nl, only differ by one bulk
layer.

As a first test, we calculated the surface energy of the
seven-layer unrelaxed Cu(111) surface using the LDA func-
tional and employing Eq. (1) as a function of the number of
k-points. For these calculations, the slab and bulk total
energies were calculated using (n · n · 1) and (n · n · n)
Monkhorst–Pack grids [64], respectively. The results are
plotted in Fig. 1. We found that for n = 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, and 28 the surface energies differ by
59.6, 48.8, 4.4, 9.2, 2.2, 2.4, 3.9, 2.9, 0.2, 3.3, and 1.2 meV,
respectively, to the converged value obtained for n = 30.

Because earlier work [12,14] had argued that the surface
energy, as defined in Eq. (1), may diverge as a function of
Nl when Ebulk

tot is obtained from a separate bulk calculation,
we evaluate the reference bulk total energy using three dif-
ferent approaches: (i) calculated separately with the same
(or similar) quality k-point mesh as the slab calculation;
(ii) calculated separately with a better quality k-point mesh
than the slab calculation; (iii) using a linear fit to Eslab

tot ðN lÞ
with Nl = 3, . . . , 12. For these calculations the total energies
of the Cu(111) slabs are obtained using an (8 · 8 · 1)
k-point set, yielding 10 k-points in the irreducible part of
the surface Brillouin zone. The resulting surface energies
are shown in Fig. 2.

Fig. 2 shows clearly that the surface energy obtained
using approach (i) (squares) with k-meshes of (8 · 8 · 1)
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and (8 · 8 · 8) for the slab and bulk, respectively, decreases
with increasing slab thickness. This problem is not
improved by approach (ii) (open circles), in which the slabs
and bulk are calculated with a (8 · 8 · 1) and (16 · 16 · 16)
MP grid, respectively. In this case the surface energy also
diverges, but in the opposite direction. Using method (iii)
(diamonds) i.e., obtaining the bulk total energy by a fit
to a series of slab total energies calculated with the
(8 · 8 · 1) MP grid, the surface energy nicely converges
with increasing slab thickness.

We also calculated the surface energy using a larger k-
point set (namely, 16 · 16 · 1, corresponding to 30 in the
IBZ) and a similar quality mesh for the bulk energy (i.e.,
16 · 16 · 16). The result is plotted in Fig. 2 (closed circles).
It can be seen that the values are very similar to those ob-
tained by approach (iii). Thus, performing separate total
energy calculations for the slabs and bulk systems does

not lead to surface energies which diverge with respect to
the number of layers in the slab, providing that each system
is calculated with sufficiently high accuracy. Very similar
behavior is obtained using the LDA and PBE functionals.
The total energies of the slabs calculated with the two dif-
ferent k-point sets are listed in Table 4.

To obtain a deeper understanding of the dependence of
the surface energy as a function of the slab thickness, we
compared our results for Cu(111) with similar calculations
performed by Da Silva for Al(111), also using the FP-
LAPW method [11]. The results reported in Fig. 3 indicate
similar behavior for both systems, however, larger oscilla-
tions are observed for the Al(111) surface. Therefore,
our results indicate a smaller dependence of the surface
energy of Cu(111) as a function of the slab thickness
compared with systems like Al(111). For example, it can
be seen in Figs. 2 and 3 that around three or four layers
(for Cu(111)) provide well converged surface energies,
e.g., r(12 L) � r(3 L) = 3.0 meV (LDA). Nevertheless, other
properties are not well converged with so few layers; for
example, the interlayer spacings require six or more layers
(see below). Given this, we therefore use seven layers to cal-
culate the surface properties of the Al(111), Pd(111), and
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Fig. 3. Surface energy ratios, rw, for the Cu(111) and Al(111) surfaces as
a function of the number of layers in the slab. rw = r(Nl)/r(Nl = 12) for
Cu(111) and r(Nl)/r(Nl = 15) for Al(111).
Pt(111) surfaces, while eight layers are used for Mg(0001)
and Ti(0001) surfaces.

The surface energies obtained using the LDA and PBE
functionals, and the theoretical as well as the experimental
lattice constants, are summarized in Table 2, along with
earlier published theoretical results. For all studied cases
the PBE functional predicts a smaller surface energy com-
pared to the LDA, e.g., for Cu(111) r = 0.64 eV/atom
(LDA) and 0.50 eV/atom (PBE), which is the same as the
trend obtained for the cohesive energies. Similar trend,
i.e., rPBE < rLDA, was also obtained by Yu and Scheffler
[10] for the low-Miller-index Pb surfaces.

We found that for Ti(0001) and Cu(111), the experi-
mental result lies between the LDA and PBE values, and
for the other systems, the LDA results are closer to exper-
iment. For the case of Pt(111), in which the LDA result is
closer to experiment, we checked the dependence of the sur-
face energy on the spin–orbit interaction for the valence
states. By including the spin–orbit interaction also for the
valence states, we obtained a surface energy of 0.84 eV/
atom for Pt(111), which is 0.07 eV/atom smaller compared
to the result without taking into account the spin–orbit
interaction for the valence states. This result is in accord
with the all-electron calculations reported in Ref. [50],
which obtained that spin–orbit coupling decreases the sur-
face energy of the Pt(111) surface by 0.20 eV/atom.

From our results, it seems that the LDA gives better val-
ues for the surface energies than the PBE functional. The
latter gives surface energies about 30% lower than the
experimental values. The apparently better performance
of the LDA (in this respect) is probably due to a better
error cancellation of the surface exchange and correlation
energy within the LDA [57]. It is important to point out
that the experimental surface energies reported in Table 2
are obtained from surface tension measurements in the
liquid phase and extrapolated to zero temperature. Hence
the value represents an average surface energy over a large
number of surface terminations. Thus, any direct compar-
ison between our calculated surface energies and the exper-
imental results to access the performance of the LDA and
PBE functionals should be taken with caution.

We also calculated the surface energies using the exper-
imental lattice constant. The experimental lattice constant
was used for both the bulk and slab calculations. The
results are summarized in Table 2. It can be seen that the
values are very similar to those obtained using the theoret-
ical lattice constant, however, there are some deviations:
For example, results using the experimental lattice constant
are 5.90% for Ti(0001) (LDA), 6.25% for Cu(111) (LDA),
7.10% for Pd(111) (PBE), and 14.10% for Pt(111) (PBE)
lower compared to those obtained using the theoretical
equilibrium lattice constant.

The values reported by Vitos et al. [9] using the tight-
binding linear-muffin-tin orbitals (TB-LMTO) approach
with the atomic sphere approximation (ASA) are consider-
ably larger than our all-electron PBE values for all studied
systems, e.g., larger by 0.3 eV/atom for Ti(0001). The



Table 2
Surface energy, r, and work function, U, of the Mg(0001), Al(111), Ti(0001), Cu(111), Pd(111), and Pt(111) surfaces

Mg(0001) Al(111) Ti(0001) Cu(111) Pd(111) Pt(111)

r (eV/atom) LDAa 0.33 (0.33) 0.39 (0.39) 1.01 (0.95) 0.64 (0.60) 0.75 (0.76) 0.91 (0.93)
PBEa 0.31 (0.30) 0.33 (0.34) 0.93 (0.93) 0.50 (0.51) 0.56 (0.51) 0.71 (0.61)
LDA 0.36b 0.56b 0.90b 0.69b 0.68c 0.98b

LDA 1.04d 0.77b, 0.75e 1.10f

GGA 0.44g 0.53g, 0.36h 1.23g 0.71g 0.82g 1.00g, 0.85f

r (J/m2) LDAa 0.62 (0.59) 0.91 (0.88) 2.27 (2.02) 1.92 (1.69) 1.87 (1.86) 2.23 (2.24)
PBEa 0.56 (0.54) 0.75 (0.77) 1.99 (1.98) 1.41 (1.44) 1.33 (1.25) 1.67 (1.47)
LDA 0.64b 0.83i 2.19j 1.94i 1.64c 2.35b

LDA 1.27b 1.95b, 2.24d 1.96b, 1.59k 1.88b

GGA 0.79g, 0.64l 1.20g, 0.82h 2.63g 1.95g 1.92g 2.30g

Exp. 0.79m 1.14m 2.10n 1.83n 2.01n 2.49m

Exp. 1.16n 1.99m 1.79m 2.00m 2.48n

U (eV) LDAa 3.80 (3.83) 4.21 (4.19) 4.66 (4.54) 5.22 (5.03) 5.64 (5.63) 6.06 (6.04)
PBEa 3.65 (3.65) 4.04 (4.04) 4.40 (4.38) 4.78 (4.82) 5.22 (5.26) 5.69 (5.73)
LDA 3.86b 4.17i, 4.54b 4.64j, 4.59b 5.10i, 5.30b 5.53c, 5.90b 6.74b

LDA 4.75d 5.19k 6.53f

GGA 4.09o, 4.06h

Exp. 3.66n 4.48p, 4.24n 4.33n 4.94n, 4.90p 5.95p, 5.55q 6.40p, 5.85p

Exp. 5.44r 6.10s

The numbers in parentheses were calculated using the experimental lattice constant (for both the slab and the bulk), instead of the theoretical equilibrium
lattice constant.
a Present work using the FP-LAPW method.
b TB-LMTO–ASA method, Ref. [8]
c FP-LMTO method, Ref. [7].
d PPPW method, Ref. [41].
e PPPW method, Ref. [38].
f FP-LAPW method, Ref. [50].
g TB-LMTO–ASA method, Ref. [9].
h FP-LAPW method, Ref. [11].
i FP-LMTO method, Ref. [36].
j LAPW method, Ref. [39].
k PPPW method, Ref. [35].
l PPPW method, Ref. [37].

m Experimental result, Ref. [3].
n Experimental result, Ref. [4].
o PPPW method, Ref. [46].
p Experimental result, Ref. [19].
q Experimental result, Ref. [74].
r Experimental result, Ref. [75].
s Experimental result, Ref. [73].
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reason for this may be due to the ASA approximation, which
does not allow for sufficient flexibility of electronic relaxa-
tion at the surface. Furthermore, Skriver and Rosengaard
[8] using the TB-LMTO–ASA method reported surface
energies calculated with the LDA using the experimental
lattice constant. They are in reasonable agreement with
our results, but again often exhibiting a slightly larger value
as for the results of Vitos et al. The largest deviation being
for Al(111) where they obtained 0.56 eV/atom compared
to our 0.39 eV/atom, while our value is very close to the re-
sult obtained by Da Silva [11] of 0.36 eV/atom.

3.2.2. Work function

The work function, U, of a solid surface is the minimum
energy required to remove an electron from the surface,
and is given by

U ¼ V esðrvacÞ � EF; ð3Þ
where EF is the Fermi energy of the system and Ves(rvac) is
the electrostatic potential far from the surface, which is
chosen to be in the middle of the vacuum region of the slab.
We calculate the work function of the Cu(111) surface as a
function of the number of layers in the slab. The results ob-
tained with the LDA and PBE functionals are plotted in
Fig. 4. For layers greater than about four, the values devi-
ate only by small amounts and may be regarded as being
converged. Thus, quantum size effects are apparently small
in this system, though some indication (e.g., minima at
Nl = 7 and 10 are present). The work functions for all
the surfaces are summarized in Table 2 along with experi-
mental and previous theoretical results.

The LDA functional predicts larger work functions than
the PBE functional for all studied surfaces, e.g., ULDA �
UPBE = 0.15 eV and 0.44 eV for Mg(0001) and Cu(111),
respectively. Inspecting the results in Table 2 we see that
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for Mg(0001), the PBE yields close agreement with exper-
iment (3.66 eV compared to 3.65 eV (PBE)). However, this
apparent agreement may be incidental since the experimen-
tal work function is for polycrystalline Mg. For Al(111),
the experimental results (4.48 and 4.24 eV) are closer to
the LDA results. For Ti(0001), similarly to Mg(0001),
the PBE (4.40 eV) yields closer agreement to the experi-
mental value (4.33 eV), however again the experimental
work function is for polycrystalline material.

With regard to the Cu(111) surface, the experimental re-
sults lie roughly in between the LDA and PBE values. For
Pd(111), the differences between the LDA and PBE values
are smaller than the differences between the experimental
results (5.44, 5.55, and 5.95 eV), hence, it is difficult to
establish any conclusion concerning the performance of
the LDA and PBE for this particular case. For Pt(111),
the experimental results (5.85, 6.10, and 6.40 eV) also exhi-
bit a significant deviation from each other. It becomes clear
that further accurate experimental measurements of work
functions would be valuable and necessary for more quan-
titative comparison with theory. The values of the work
functions obtained using the experimental lattice constant
are quite similar to those obtained using the theoretical
one. The two largest deviations are for the Ti(0001) and
Cu(111) systems using the LDA, where the values ob-
tained using the experimental lattice constant are 2.6%
and 3.6% less than those obtained using the theoretical one.

In general our results for the work function are in good
agreement with previous theoretical calculations for all
studied systems, except for Pt(111), in which a work func-
tion of 6.74 eV was obtained using the LDA in Ref. [8] with
the TB-LMTO–ASA method, while our result is 6.06 eV.
Such difference might be due to the TB and ASA
approximations.

3.2.3. Interlayer spacing relaxations

The creation of a surface alters the electron density of
the topmost surface layers, and hence the atoms change
their atomic positions. Fig. 5 shows the surface relaxations
for Cu(111) calculated with the LDA and PBE functionals
as a function of the number of layers in the slab. The
changes in the interlayer spacings are presented with re-
spect to the unrelaxed interlayer spacing, i.e., Ddij =
100(dij � d0)/d0, where d0 is a0=

ffiffiffi
3

p
for fcc(111) and ch0=2

for hcp(0001). It can be seen from Fig. 5 that a larger
number of layers in the slab, i.e., 7, are required to obtain
converged interlayer relaxations compared to the surface
energy and work function. The interlayer relaxations for
all studied surfaces calculated using seven and eight layers
for the fcc(111) and hcp(0001) surfaces, respectively, are
summarized in Table 3 along with LEED and previous
theoretical results.

For all studied surfaces, the LDA and PBE function-
als predict very similar results (see Table 3). Thus, the
agreement between quantitative LEED analyses and DFT
calculations does not depend critically on the exchange–
correlation functional employed. However, the LDA and
PBE predict quite different interlayer relaxations when
the experimental lattice constant is used (see Table 3). Even
qualitatively different relaxations are obtained using the
experimental lattice constant. For example, for Pd(111),
the LDA predicts a contraction of �2.20% for the topmost
interlayer spacing, while the PBE predicts an expansion of
+2.94%. However, using the respective LDA and PBE the-
oretical lattice constants, both functionals predict very sim-
ilar results [�0.22% (LDA) and �0.01% (PBE)]. Similar
result was found by Feibelman and Hamann for the
Rh(001) surface employing also the LAPW method [34],
however, in their work was restricted to the topmost inter-
layer relaxation. The reason for this behavior is due to the
strain imposed by performing the calculations at the exper-
imental value. For Cu(111) the experimental lattice con-
stant is 2.50% larger than that obtained theoretically with
the LDA. This results in the greater interlayer contractions
when the experimental lattice constant is used (�6.33% ver-
sus �1.58%) because the atoms relax to try and roughly
preserve the theoretical equilibrium volume. Compared to
the value obtained with the PBE functional, the experimental



Table 3
Changes in the interlayer spacings, Ddij, of closed-packed metal surfaces calculated with the LDA and PBE functionals

Mg(0001) Al(111) Ti(0001) Cu(111) Pd(111) Pt(111)

Dd12 LDAa +1.18 (�2.59) +1.35 (�2.08) �6.44 (�11.32) �1.58 (�6.33) �0.22 (�2.20) +0.88 (�0.82)
(%) PBEb +1.24 (+0.91) +1.35 (+1.09) �6.84 (�8.00) �1.19 (�0.44) �0.01 (+2.94) +1.14 (+3.98)

LDA +1.13b, +1.50c �7.70d �1.27e �0.10f +1.3g

LDA +1.80h �6.80i +0.56j 0.0k

GGA +1.06l, +1l �0.80m �0.03n +0.87o

GGA +1.08l, +1.15p +1.20q

LEED +1.8r +2.2 ± 1.3s �2.1t �0.7 ± 0.5u +1.3 ± 1.3v +1.0 ± 0.1w

LEED +1.9 ± 0.4x +0.9 ± 0.5y �4.9z �0.3 ± 1.0z1 +2.4 ± 0.9z2 +1.0s

LEED +1.7 ± 0.3z3

LEED +1.3 ± 0.8z4

Dd23 LDAa +0.36 (�3.39) +0.54 (�2.94) +2.64 (�2.78) �0.73 (�5.34) �0.53 (�2.81) �0.22 (�1.99)
(%) PBEb +0.24 (+0.23) +0.54 (+0.24) +2.82 (+1.91) �0.65 (�0.14) �0.41 (+2.49) �0.29 (+2.83)

LDA +0.31b, +0.50c +2.80d �0.64e +0.3g

LDA +0.20h +1.2i �0.07j

GGA �1.53l,�2l �0.58m +0.08n �0.50q

GGA �0.10l,�0.05p

LEED 0.0r +0.5 ± 0.7z3 +1.4z �1.3 ± 1.3v

LEED +0.8 ± 0.4x +0.7 ± 0.9z2

Dd34 LDAa �0.73 (�3.69) +1.04 (�2.18) +0.37 (�6.91) �0.43 (�4.98) �0.33 (�2.79) �0.17 (�1.86)
(%) PBEb �0.72 (�0.73) +1.06 (+0.94) �0.51 (�1.90) �0.24 (�0.06) �0.22 (+2.24) �0.21 (+2.77)

LDA +0.21b, +0.10c �0.26e +0.5g

LDA �0.3h +0.55j

GGA �0.54l, +0.05l �0.15m 0.00n

GGA +0.46p

LEED 0.0r �1.1z +2.2 ± 1.3v

LEED �0.4 ± 0.4x +0.7 ± 1.8z2

The numbers in parentheses were obtained using the experimental lattice constant instead of the theoretical lattice constant. ‘‘+’’ and ‘‘�’’ indicate
expansion and contraction of the interlayer spacings, respectively. Nl = 7 for Al(111), Cu(111), Pd(111), Pt(111) and 8 for Mg(0001) and Ti(0001).
a Present work using the FP-LAPW method.
b Ref. [45].
c Ref. [37].
d Ref. [39].
e Ref. [35].
f Ref. [7].
g Ref. [50].
h Ref. [44].
i Ref. [41].
j Ref. [48].
k Ref. [38].
l Ref. [46].

m Ref. [51].
n Ref. [49].
o Ref. [43].
p Ref. [11].
q Ref. [47].
r Ref. [33].
s Ref. [22].
t Ref. [20].
u Ref. [25].
v Ref. [26].
w Ref. [21].
x Ref. [29].
y Ref. [24].
z Ref. [32].
z1 Ref. [23].
z2 Ref. [30].
z3 Ref. [28].
z4 Ref. [31].
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lattice constant is only 0.56% larger, so the interlayer relax-
ations do not deviate substantially (�0.44% versus
�1.19%) when calculated at the theoretical or experimental
lattice constants. For Pd(111), the experimental lattice
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constant is about 1.0% greater compared to that obtained
using the LDA, and 1.5% smaller compared to that ob-
tained using the PBE. Thus, with the atoms relaxing to
try and preserve the theoretical equilibrium volume, there
is a contraction of the first interlayer spacing for the case
of the LDA (�2.2%) and an expansion for the PBE
(2.94%) when calculated at the experimental lattice con-
stant, given that the relaxations obtained using the theoret-
ical lattice constant are practically zero. The results for the
other surfaces can be similarly understood. It is thus very
important to use the theoretical lattice constant, and not
simply the experimental value.

In the following, we will describe the interlayer spacings
obtained using the LDA (and the theoretical equilibrium
lattice constant), since the PBE predicts very similar results
as mentioned above. For Mg(0001), we found a small
expansion of +1.18% for the topmost interlayer spacing,
which is in good agreement with LEED results, e.g.,
Dd12 = +1.8% [33] and +1.9 ± 0.4% [29]. The experimen-
tally determined interlayer spacings reported in Ref. [29]
were obtained at temperature of 100 K, while in Ref.
[33], they were extrapolated to zero temperature. Further-
more, we found an expansion of +0.36% and a contraction
of �0.73% for the second and third interlayer spacings.
Our results are in good agreement with the PPPW calcula-
tions reported in Refs. [37,44,45], except for the third inter-
layer spacing, which was reported to expand in Refs.
[37,45].

For Al(111) there is an expansion of the first, second
and third interlayer spacings of +1.35%, +0.54%, and
+1.04%. PPPW calculations reported an expansion of the
topmost layer by +1.05% and a contraction of �1.53%
and �0.54% for the second and third interlayer spacings,
respectively [46]. Recent FP-LAPW calculations performed
by Da Silva [11] using a slab with seven layers (15 layers)
found relaxations of +0.90% (+1.15%), �0.47%
(�0.05%), and +0.46% (+0.46%) for the first, second,
and third interlayer spacings, respectively, which differs
from our results for the second interlayer spacing. The
LEED intensity analyses find an expansion of the topmost
interlayer spacing by +2.2 ± 1.3% [22], +0.9 ± 0.5% [24],
+1.7 ± 0.3% [28], and 1.3 ± 0.8% [31], while 0.5 ± 0.7%
[28] was found for the second interlayer spacing. Therefore,
there is good agreement between our results and LEED
analyses, however, the sign of the relaxation of the second
interlayer spacing obtained by LEED should be taken with
caution due to the very small value and large (relative)
error.

For Ti(0001), our calculations yield a contraction of the
topmost interlayer spacing of �6.44%, while the second
and third interlayer spacing expands by +2.64% and
+0.37%, respectively. The contraction of the topmost inter-
layer spacing is in good agreement with PPPW calculations
(�6.8%) [41], while LAPW calculations [39] predict a
slightly greater first layer contraction (�7.7%). However,
LEED analysis of the Ti(0001) surface predicts a contrac-
tion of only �2.1 ± 2.1% [20]; significantly less than pre-
dicted theoretically. Recently, Teeter and Erskine studied
the influence of hydrogen contamination on the interlayer
spacings of Ti(0001) by LEED intensity analyses and elec-
tron-energy loss spectroscopy [32]. They reported that it is
impossible to maintain a hydrogen-free Ti(0001) surface
during the LEED measurements. A value of �4.9 ± 1%
was reported for the topmost interlayer spacing, which
was obtained for between 13% and 23% of the hydrogen
saturation coverage limit. They suggested that if Dd12 is lin-
ear with hydrogen coverage, the interlayer spacing of a
hydrogen-free surface should be from 10% up to 20%
greater than �4.9%, i.e., � �6%, which is close to our the-
oretical calculations.

For Cu(111), there is a small contraction of the first, sec-
ond, and third interlayer spacings by �1.25%, �0.46%, and
�0.20%, respectively. The contraction of the topmost inter-
layer spacing is consistent with LEED intensity analyses,
which obtained �0.3 ± 1.0% [23] and �0.7 ± 0.5% [25].
Our result for Dd12 is in good agreement with PPPW calcu-
lations reported in Ref. [35], but is in contrast to the PPPW
calculations reported in Ref. [48], which found an expan-
sion for the topmost interlayer spacing. Furthermore, our
results are fully in accord with similar calculations
performed by Da Silva et al. [51] using the FP-LAPW
method.

For Pd(111), our results yield a very small contraction
of the three outermost interlayer spacings. A LEED analy-
sis reports an expansion of the topmost interlayer spac-
ing, e.g., +1.3 ± 1.3% [26], while a contraction and an
expansion of the second and third interlayer spacings of
�1.3 ± 1.3% and +2.2 ± 1.3% was reported [26], respec-
tively. It can be noted that the expansion of the third inter-
layer spacing is larger than for the topmost interlayer
spacing, which is not often seen in multilayer relaxations.
The difference between theory and LEED might be due
to the presence of hydrogen on the surface and in the sub-
surface region, in view of the easy adsorption of hydrogen
atoms in bulk palladium and the resulting difficulty in
keeping the Pd(111) surface free of hydrogen [26]. First-
principles calculations using the same FP-LAPW method
and same correlation functional [49] as used in the present
work obtained a very similar small contraction of the first
interlayer spacing (�0.03%), while for the second layer, a
small expansion of 0.08% was obtained, in contrast to
the small contraction obtained in the present work. From
investigation of the potential energy surface related to the
second interlayer spacing minimum by the authors of
Ref. [49], it was found that it is very shallow.

For Pt(111), similar to the Mg(0001) and Al(111) sur-
faces, we find an expansion of the topmost interlayer spac-
ing, i.e., the LDA result is +0.88%, which is in good
agreement with LEED results, which found an expansion
of +1.0 ± 1.3% [22] and +1.0 ± 0.1% [21]. The second
and third layers contract slightly by 0.22% and 0.17%.
DFT calculations, employing a linear combination of
atomic orbitals, obtained an expansion of 0.87% [43] for
the first interlayer spacing, in close agreement with our
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result, while PPPW calculations within the GGA func-
tional obtained that the first and second interlayer spacings
expand and contract by +1.20% and �0.50%, respectively
[47], also in good agreement with our results.

4. Conclusion

We calculated surface energies, work functions, and the
interlayer relaxations of the close-packed Mg(0001),
Al(111), Ti(0001), Cu(111), Pd(111), and Pt(111) sur-
faces employing the all-electron FP-LAPW method using
the LDA and PBE functionals. All surface properties were
calculated using the theoretical and experimental equilib-
rium lattice constants. The highly converged results ob-
tained in the present work can be used as a reference or
‘‘benchmark’’ for other calculation approaches, e.g., to
help in the construction of pseudopotentials, or for com-
parison with experimental results.

For Cu(111), the mentioned surface properties were
studied as a function of the number of layers in the slab.
From these calculations, we found that the surface energy,
computed using Eq. (1) with slab and total energies ob-
tained from separate DFT calculations, converges as a
function of the number of layers in the slab, as expected,
provided both calculations are carried out with the same
high accuracy. In previous studies, such convergence was
not obtained [12,14,13] which from our systematic study,
we believe to be due to a lack of a sufficiently high accuracy
with respect to the integrations of the bulk and surface
Brillouin zones. We obtained a similar good convergence
for the work function and multilayer relaxations.

Our results show that the LDA and PBE functionals
predict very similar interlayer spacing relaxations for all
the studied close-packed surfaces, provided the respective
LDA and PBE equilibrium lattice constants are used.
Therefore, in the study of the interlayer spacing relax-
Table 4
Total energies of Cu(111) slabs, Eslab

tot , as obtained using the k-point sets of (8 ·
according to: r ¼ 1=2 Eslab

tot � N lEbulk
tot

� �

Nl Eslab
tot ; (16 · 16 · 1)

LDA PBE

1 �3304.886551 �3310.005498
2 �6609.843529 �6620.060413
3 �9914.805616 �9930.120684
4 �13219.774737 �13240.187823
5 �16524.740734 �16550.251907
6 �19829.709071 �19860.318046
7 �23134.672660 �23170.380174
8 �26439.642232 �26480.447501
9 �29744.606648 �29790.510367
10 �33049.573588 �33100.576225
11 �36354.539425 �36410.640675
12 �39659.506925 �39720.706165

The three values of the bulk total energy per atom are: (i) Ebulk
tot ¼ �3304:966866

and PBE, respectively; (ii) Ebulk
tot ¼ �3304:964146 Ry and �3310.062791 Ry us

from a linear fit using Nl = 3 up to 12 for the slab calculations using the k-poin
LDA and PBE, respectively.
ations, at least for the studied systems and tested function-
als, the exchange–correlation functional does not play a
significant role. However, the same is not true for the
surface energy and work functions, which depends quite
strongly on the exchange–correlation functional. The PBE
in general predicts lower surface energies and smaller work
functions as compared to the LDA. The experimental
trends, however, are described correctly by both function-
als. Furthermore, we found that both functionals predict
very different interlayer relaxations if the experimental
lattice constant is used, while, comparatively little differ-
ence is observed in the surface energies and work functions.
We found good agreement between theoretical and experi-
mental results for the bulk and surface properties, however,
in some particular cases, discrepancies were found. For
example, the experimental contraction of the topmost
interlayer spacing of the Ti(0001) surface is almost three
times larger than our theoretical result. This is thought to
be due to hydrogen contamination.

Appendix A

The slab and bulk total energies used to compute the
surface energies of Cu(111) plotted in Fig. 2 are listed in
Table 4. Below, we test the affect that the error introduced
due to the broadening parameter used in the Fermi–Dirac
distribution function has on the surface properties.

The accuracy and the computational effort of first-prin-
ciples calculations performed for periodic systems depends
directly on the cutoff energy and integration of the BZ.
Careful tests with respect to the cutoff energy and number
of k-points in the BZ for the bulk and surface properties
have been reported in Ref. [15]. Here, we focus just on
the BZ integration. Commonly, two approaches are used
to perform the integration: (i) the special k-points method
with a broadening of the Fermi surface by the Fermi–Dirac
8 · 1) and (16 · 16 · 1), which were used to calculate the surface energies

Eslab
tot ; (8 · 8 · 1)

LDA PBE

�3304.882540 �3310.001969
�6609.837166 �6620.054219
�9914.805238 �9930.119891
�13219.769038 �13240.181958
�16524.740343 �16550.250799
�19829.700196 �19860.309797
�23134.664074 �23170.372424
�26439.635347 �26480.441065
�29744.598594 �29790.503211
�33049.563732 �33100.567235
�36354.528916 �36410.630942
�39659.493695 �39720.693812

Ry and �3310.065074 Ry for the k-point set of (16 · 16 · 16) for the LDA
ing the k-point set of (8 · 8 · 8) for the LDA and PBE, respectively; (iii)
t set of (8 · 8 · 1), Efit

tot ¼ �3304:965446 Ry and �3310.063874 Ry for the



Table 5
Interlayer spacing relaxations, Ddij, work function, U, and the surface energy, r, of the Pd(111) surface calculated using different values for the broadening
parameter, kBTelec, used in the integration of the surface BZ

kBTelec (eV) Dd12 (%) Dd23 (%) U (eV) r (eV/atom) DEslab
tot (eV)

0.30 �0.39 �0.15 5.55 0.77 0.23
0.20 �0.43 �0.51 5.59 0.77 0.11
0.11 �0.31 �0.83 5.63 0.77 0.03
0.05 �0.24 �0.88 5.65 0.77 0.01
0.01 �0.18 �0.92 5.68 0.78 0.00
TETRA �0.18 �1.09 5.67 0.78 0.00

The relative error in the slab total energy, with respect to the total energy computed using the modified tetrahedron method, i.e.,
DEslab

tot ¼ Eslab
tot ðTETRAÞ � Eslab

tot ðkBT elecÞ, is also reported.
Note: TETRA indicates that these results were obtained using the modified tetrahedron method in the integration of the surface BZ using a (16 · 16 · 1)
k-point mesh.
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distribution function [64] and (ii) the modified tetrahedron
method [76]. The physical quantities obtained with the for-
mer scheme depends on the magnitude of the broadening
parameter, kBTelec, while the latter scheme is exact in prin-
ciple, but it requires a large number of k-points. kB is the
Boltzman constant and Telec is the artificial electronic
temperature.

The broadening of the Fermi surface by the Fermi–Dir-
ac distribution function is an approximation used to reduce
the number of necessary k-points and to avoid instabilities
in the self-consistent procedure for metallic systems. How-
ever, this approach induces errors in the electron density
due to the artificial occupation of the electronic states
above the Fermi level, and hence, it introduces an error
in the total energy. The total energy at zero electronic tem-
perature is obtained by an extrapolation proposed in Ref.
[66], i.e., EtotðT elec ¼ 0Þ � EtotðT elecÞ � 1

2
T elecSðT elecÞ, where

S(Telec) denotes the entropy associated with the occupation
numbers of the electronic states. The expression for S(Telec)
is obtained for a free-electron gas system. Errors in forces
due to the broadening parameter were discussed in Ref.
[65] and we note a too large broadening parameter might
affect the interlayer relaxations.

To test the accuracy of our calculations with respect to
the broadening parameter, we choose the Pd(111) surface
as a test case, which has a large density of states at the Fer-
mi level. Therefore this system should be particularly sensi-
tive to the broadening parameter. The calculations are
performed for different values i.e., kBTelec = 0.01, 0.05,
0.11, 0.20, and 0.30 eV, while 30 k-points are used in the
integration of the surface BZ, i.e., a (16 · 16 · 1) k-point
mesh. We use the LDA functional and a slab of five layers,
which is sufficient since we are only interested in changes in
the surface properties as a function of the broadening
parameter. Calculations are also performed using the mod-
ified tetrahedron method for reference [a (16 · 16 · 1)
k-point mesh was also used]. The results are summarized
in Table 5.

Broadening parameters in the range of 0.01–0.30 eV are
found not play a critical role for the surface energy, while
the work function is only slightly changed, i.e., it systemat-
ically decreases with increasing kBTelec. However, the inter-
layer spacings change significantly, as can be seen in Table
5. The relative error in the slab total energy with respect to
the total energy computed using the modified tetrahedron
method, i.e., DEslab

tot ¼ Eslab
tot ðTETRAÞ � Eslab

tot ðkBT elecÞ, in-
creases with increase of the broadening parameter. For
example, DEslab

tot ¼ 0:01 eV and 0.23 eV for kBTelec =
0.05 eV and 0.30 eV, respectively. Thus, the correction pro-
posed in Ref. [66] does not adequately correct the total
energy for large values of the broadening parameter.
Therefore, the constant values of the surface energy as a
function of the broadening parameter is due to error can-
cellation between the slab and bulk total energies used in
Eq. (1) to compute the surface energy.

The slight changes in the work function are mainly due
to changes in the Fermi level. The interlayer spacings
clearly depend on the broadening parameter as mentioned
above. For example, Dd12 = �0.18% and �0.39% for
kBTelec = 0.01 eV and 0.30 eV, respectively, however, the
largest change is obtained for the second interlayer spacing,
e.g., Dd23 = �0.92% and �0.15% for kBTelec = 0.01 eV and
0.30 eV, respectively. Thus, the errors are not the same for
all interlayer spacings. The surface properties calculated
using kBTelec = 0.01 eV are almost the same as those com-
puted using the modified tetrahedron method, which shows
that by systematically decreasing the broadening parameter
we can obtain highly accurate results; however, using small
values for the broadening parameter introduces instabilities
in the self-consistent procedure. From the tests reported in
the present appendix, a value of 0.05 eV for the broadening
parameter was chosen to perform all our surface calcula-
tions as it yields a balance between good accuracy and
stability.
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