Peng Zhang, Ph.D

School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia, Cell Phone: (+61) 0420958698, Email: peng.zhang1@sydney.edu.au

Personal information:

Sex: Male Nationality: Chinese

Date of Birth: Mar 1st, 1985 Marital status: Married

Education experience:

Doctor of Philosophy, Materials Science & Engineering (Sep 2007 – Dec 2012)
 Department of Materials Science and Engineering, Jilin University, China

Dissertation: Several Catalytic Processes on Fuel Cell Electrode Surface: A First Principles Study

Advisor: Prof. Qing Jiang

Bachelor of Science, Materials Science & Engineering (Sep 2003 – Jun 2007)
 Department of Materials Science and Engineering, Jilin University, China
 Related courses: Chemistry, Physics, Chemicophysics, Materials Physics,
 Mechanics of Materials, Higher Mathematics, C Language, et al.

Work experience:

• Lecturer (Jan. 2013 - Sep. 2016)

School of Materials Science and Engineering, Jiangsu University, China Course: Fundamentals of Materials Science and Engineering

- Association Professor (Sep. 2016 Now)
 School of Materials Science and Engineering, Jiangsu University, China
- Visiting Scholar (Nov. 2017 now)
 School of Physics, The University of Sydney, Australia

Research experience:

Investigated the mechanism of heterogeneous catalysis by first-principles

- Oxygen reduction reaction
 - > Determined the potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes
 - > Discovered the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction
 - \triangleright Detected the elemental dependent on the oxygen reduction activity of two-dimensional π -conjugated metal bis(dithiolene) complex nanosheets
- CO oxidation
 - Revealed the structural selectivity of CO oxidation on Fe/N/C catalysts
- CO₂ capture
 - ➤ Studied the curvature effect of CO₂ capture and reduction on SiC nanotubes

Professional skills:

- Proficient in density functional theory and molecular dynamics calculations
- Familiar with many density functional theory and molecular dynamics codes, such as DMol3, CASTEP, Forcite and Discover
- Familiar with C language

Publications:

- 1. **P. Zhang,** B. B. Xiao, X. L. Hou, Y. F. Zhu,* Q. Jiang,* Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. *Sci. Rep.* 2014, 4, 3821.
- 2. **P. Zhang,** X. L. Hou, L. Liu, J. L. Mi,* M. D. Dong,* Two-Dimensional π-Conjugated Metal Bis(dithiolene) Complex Nanosheets as Selective Catalysts for Oxygen Reduction Reaction. *J. Phys. Chem. C* 2015, 119, 28028-28037.
- 3. **P. Zhang,** X. F. Chen, J. S. Lian, Q. Jiang,* Structure Selectivity of CO Oxidation on Fe/N/C Catalysts. *J. Phys. Chem. C* 2012, 116, 17572-17579.
- 4. **P. Zhang,** W. T. Zheng, Q. Jiang,* Behaviors of Monomer H₂O on the Cu(111) Surface under Surface Charges. *J. Phys. Chem. C* 2010, 114, 19331-19337.
- 5. **P. Zhang,** X. L. Hou,* J. L. Mi, Y. Q. He, L. Lin, Q. Jiang, M. D. Dong,* From Two-Dimension to One-Dimension: the Curvature Effect of Silicon-Doped Graphene and Carbon Nanotubes for Oxygen Reduction Reaction. *Phys. Chem. Chem. Phys.* 2014, 16, 17479-17486.
- 6. **P. Zhang,** J. S. Lian, Q. Jiang,* Potential Dependent and Structure Selectivity of the Oxygen Reduction Reaction on Nitrogen-Doped Carbon Nanotubes: A Density Functional Theory Study. *Phys. Chem. Chem. Phys.* 2012, 14, 11715-11723.
- 7. **P. Zhang,** X. L. Hou,* J. L. Mi, Q. Jiang, H. Aslanb, M. D. Dong,* Curvature Effect of SiC Nanotubes and Sheets for CO₂ Capture and Reduction. *RSC Adv.* 2014, 4, 48994-48999.
- 8. **P. Zhang,** Q. Hu, X. J. Yang, X. L, Hou,* J. L, Mi, L. Liu, M. D. Dong,* Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. *RSC Adv.* 2018, 8, 531-536.
- 9. **P. Zhang,** X. L. Hou,* J. L. Mi, L. Liu, M. D. Dong,* Oxygen Reduction Reaction on M-S4 Embedded Graphene: A Density Functional Theory Study. *Chem. Phys. Lett.* 2015, 641, 112-116.
- 10. **P. Zhang,** X. L. Hou,* S. Li, D. Liu, M. D. Dong,* Curvature Effect of O₂ Adsorption and Dissociation on SiC Nanotubes and Nanosheet. *Chem. Phys. Lett.* 2015, 619, 92-96.
- 11. **P. Zhang,*** X. L. Hou, Y. Q. He, Q. M. Peng,* M. D. Dong,* The Effects of Surface Group Functionalization and Strain on the Electronic Structures of Two-Dimensional Silicon Carbide. *Chem. Phys. Lett.* 2015, 628, 60-65.

- 12. X. L. Hou, **P. Zhang,*** S. Li, W. Liu,* Enhanced Electrocatalytic Activity of Nitrogen-Doped Olympicene/Graphene Hybrids for the Oxygen Reduction Reaction. *Phys. Chem. Chem. Phys.* 2016, 18, 22799-22804.
- 13. Y. Q. He, **P. Zhang**,* X. L. Hou, J. J. Xu, M. Q. Wang, Y. S. Wu, J. C. Qu, M. D. Dong,* Adjusting the Electronic Properties of Silicon Carbide Nanoribbons by Introducing Edge Functionalization. *RSC Adv.* 2014, 4, 35042-35047.
- 14. X. L. Hou, Q. Hu, P. Zhang,* J. Mi,* Oxygen Reduction Reaction on Nitrogen-Doped Graphene Nanoribbons: A Density Functional Theory Study. *Chem. Phys. Lett.* 2016, 663, 123-127.
- 15. C. He, **P. Zhang,** Y. F. Zhu, Q. Jiang,* Structures and Quantum Conduction of Copper Nanowires under Electric Fields using First Principles. *J. Phys. Chem. C* 2008, 112, 9045-9049.
- 16. B. Xiao, **P. Zhang**, L. P. Han, Z. Wen,* Functional MoS₂ by the Co/Ni Doping as the Catalyst for Oxygen Reduction Reaction, *Appl. Surf. Sci.* 2015, 354, 221-228.
- 17. H. Q. Feng, C. Y. Wu, **P. Zhang**, J. L. Mi,* M. D. Dong,* Facile Hydrothermal Synthesis and Formation Mechanisms of Bi₂Te₃, Sb₂Te₃ and Bi₂Te₃-Sb₂Te₃ Nanowires, *RSC Adv.* 2015, 5, 100309-100315.
- 18. H. Li,* S. Liu, L, Chen, J, Wu, P. Zhang, H, Tang, C. Li, X. Liu, Z. Wang, J. Meng,* Atomic Structures and Electronic Properties of Ta-doped 2H-NbSe₂, RSC Adv. 2014, 4, 57541-57546.